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mende Verbreitung von gegen die derzeit verabreichten
Medikamente resistenten St�mmen der unterschiedlichen
Plasmodium-Parasiten erfordert eine rasche Suche nach
Therapieans�tzen, die auf neuen Wirkmechanismen basie-
ren.[1] Enzyme aus dem „Nicht-Mevalonat-Biosyntheseweg“
zum Aufbau der C5-Vorstufen von Terpenen, Isopentenyldi-
phosphat (IPP, 1) und Dimethylallyldiphosphat (DMAPP, 2),
wurden vor kurzem als m9gliche Zielverbindungen f�r die
Entwicklung neuer Antimalaria- und antimikrobieller Wirk-
stoffe beschrieben.[2,3] Der „Nicht-Mevalonat-Biosynthese-
weg“[4] beruht auf der Kondensation von Pyruvat (3) mit
Glyceraldehyd-3-phosphat (4 ; Schema 1) und ist die einzige

Quelle f�r 1 und 2 in Plastiden h9herer Pflanzen[5a–c] sowie in
zahlreichen Bakterien,[4b, 5c,6] darunter auch den f�r schwere
Krankheitsbilder verantwortlichen, wie Mycobacterium tu-
berculosis[6b] und den protozoischen Plasmodium-Parasiten
(Apicomplexa).[3] Da S�uger ausschließlich den „Mevalonat-
Weg“ zur Synthese von 1 und 2 verwenden,[6] k9nnte die
Entwicklung niedermolekularer Leitstrukturen zur Hem-
mung der Enzyme auf dem „Nicht-Mevalonat-Weg“ ent-
scheidend f�r den Weg zu neuen Antimalaria-Wirkstoffen
werden.[1b, 2, 3]

Wir haben das Enzym IspF (2C-Methyl-d-erythrit-2,4-
cyclodiphosphat-Synthase, ygbB) als Zielverbindung f�r die
strukturbasierte Entwicklung von Leitstrukturen ausge-
w�hlt.[7,8] IspF ist das f�nfte Enzym im „Nicht-Mevalonat-
Weg“ und katalysiert die Cyclisierung von 5 zu 6. Den Kris-
tallstrukturen (Proteindatenbank(PDB)[8, 9]-Eintr�ge 1GX1
and 1JY8) zufolge liegt IspF als C3-symmetrisches Homotri-
mer vor. Die topologisch �quivalenten aktiven Zentren be-
finden sich dabei an den Grenzfl�chen benachbarter Unter-

einheiten. Die starre, hochkonservierte „Tasche III“ eines
Monomers bindet den Cytidinrest von 5, und die gr9ßere,
flexiblere „Tasche II“ des angrenzenden Monomers bindet
die 2C-Methyl-d-erythrit-Teile von 5 und 6 (f�r die Protein-
reste, die diese Taschen bilden, siehe Abbildung 1b). Ta-

sche II enth�lt auch ein tetraedrisch koordiniertes ZnII-Ion.
Die Inhibitoren 7–9 wurden mithilfe des Molek�lmodellie-
rungsprogramms MOLOC[10, 11] so entworfen, dass sie die
beiden Taschen besetzen. Da bisher keine Hemmstoffe von
IspF beschrieben waren, w�hlten wir in einem ersten Schritt
den Cytidin-5’-diphosphat(CDP)-Teil des nat�rlichen Sub-
strats zur Besetzung der Tasche III. Dessen Diphosphatrest
ist �ber einen Abstandhalter geeigneter L�nge mit einem
aromatischen Rest verkn�pft, der die durch Leu76’, Phe61’
und Ile 57’ gebildete hydrophobe Spalte der Tasche II beset-
zen soll. (Abbildung 1). Da wir in dieser fr�hen Phase des
Projekts auch daran interessiert waren, einen Fluoreszenz-
basierten Enzymhemmungstest zu entwickeln, w�hlten wir

Schema 1. Der „Nicht-Mevalonat-Weg“ in der Biosynthese der C5-Vor-
stufen f@r Terpene, IPP (1) und DMAPP (2) (siehe Hintergrundinfor-
mationen). DXS=1-Desoxy-d-xylulose-5-phosphat-Synthase, CMP=
Cytidin-5’-monophosphat.[4–8]

Abbildung 1. Bindungsmodus von 7 in der Kristallstruktur des ternAren
Komplexes mit IspF und ZnII bei 2.3 M AuflEsung.[17] Die gezeigte Li-
gandenbindung erfolgt an der GrenzflAche der Untereinheiten A und C.
Die mit ’ gekennzeichneten Reste stammen vom benachbarten Mono-
mer. F@nf der sechs unabhAngigen aktiven Zentren von IspF zeigen die
abgebildete Bindungskonformation. a) Bindungsmodus von 7 (blau)
mit mEglichen Wasserstoffbr@cken als rote gestrichelte Linien.
b) Fo�Fc-Differenzelektronendichteverteilung mit einer Umh@llung auf
dem 2s-Niveau, umgeben von Proteinresten innerhalb eines Abstands
von 4 M. Farbkodierung: C grau, O rot, N blau, S gr@n, P gelb, Zn lila.
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die Reste Anthranilat (2-Aminobenzoat) und Dansyl (5,5-
Dimethylaminonaphthalinsulfamoyl) als aromatische Ein-
heiten f�r die Besetzung der Tasche II aus.[12]

Die Synthese der Zielverbindung 7 ist in Schema 2 gezeigt
(siehe Hintergrundinformationen f�r die Synthese von 8 und
9). Die Reduktion des Nitroderivats 10 f�hrte zum Anthra-

nilat 11, das �ber eine modifizierte Mitsunobu-Reaktion[13]

zum Phosphotriester 12 phosphoryliert wurde. Entfernung
der Benzylreste durch Hydrierung lieferte das freie Phosphat
13. Das gew�nschte Diphosphat wurde �ber eine durch 1H-
Tetrazol katalysierte Moffatt-Kondensation von 13 mit Cyti-
din-5’-monophosphomorpholidat-4-morpholin-N,N’-dicyclo-
hexylcarboxamidin-Salz erhalten.[14] Ionenaustauschchroma-
tographie (DOWEX 50 WX8 (NH4

+)) ergab das Diammo-
niumsalz von 7, das s�ulenchromatographisch an Cellulose
gereinigt und vollst�ndig charakterisiert wurde (siehe Hin-
tergrundinformationen).

Fluoreszenz-Bindungstitrationen wurden zur Bestim-
mung der DissoziationskonstantenKd der Komplexe von IspF
aus Escherichia coli mit den Liganden 7–9 durchgef�hrt.[15]

Dabei f�hrte die Zugabe des Enzyms zu hypsochromer Ver-

schiebung und Intensit�tssteigerung der Fluoreszenzemissi-
on, was auf die Komplexierung der Fluoreszenzsonden in
einer Umgebung reduzierter Polarit�t zur�ckgef�hrt werden
kann. Die Affinit�tsdaten zeigten sich stark von der in L9sung
vorhandenen ZnII-Ionenkonzentration abh�ngig; deshalb
wurde in den Bindungsstudien Zn(OAc)2 in einer zur S�tti-
gung des Enzyms ausreichenden Konzentration zugegeben.
Typische Titrationskurven[15] sind in Abbildung 2 gezeigt. Die

Dissoziationskonstanten, die in Tabelle 1 zusammengefasst
sind, wurden mithilfe nichtlinearer Kurvenanpassung nach
der Methode der kleinsten Fehlerquadrate ermittelt. Alle drei

Hemmstoffe zeigen Bindungsaktivit�ten im unteren mikro-
molaren Bereich. Parallel dazu wurden IC50-Werte (IC50 =

Konzentration des Inhibitors, bei der 50 % der maximalen
Anfangsgeschwindigkeit gemessen wird) f�r 9, CDP und
CMP �ber Enzym-katalysierte Umsetzungen mit 13C-NMR-
spektroskopischer Produktanalyse bestimmt (siehe Hinter-
grundinformationen).[16] Danach zeigt der Hemmstoff 9 einen
niedrigeren IC50-Wert (3.0 mm) als CDP (7.3 mm) und CMP
(15.0 mm), was auf einen Gewinn an freier Bindungsenthalpie
durch die Einf�hrung des aromatischen Fluorophors in den
synthetischen Liganden schließen l�sst. Die durch die Er-
gebnisse der Fluoreszenzstudien nahe gelegte Beteiligung der
fluoreszierenden aromatischen Reste an der Bindung an das
Enzym aus E. coli konnte anschließend durch R9ntgenkris-
tallstrukturanalysen der Komplexe von IspF mit den Ligan-
den 7 und 9 best�tigt werden.

Die Strukturen der tern�ren Komplexe von 7 (Abbil-
dung 1) und 9 (siehe Hintergrundinformationen) mit einem

Schema 2. Synthese des fluoreszierenden Liganden 7. a) Zn, AcOH,
MeOH, 0!20 8C, 5 h, quant.; b) HOPO(OBn)2, DIAD, Ph3P, THF
20 8C, 63%; c) H2, 10% Pd/C, CH2Cl2/EtOH, 7 h, 20 8C, 98%; d) Et3N,
Cytidin-5’-monophosphomorpholidat-4-morpholin-N,N’-dicyclohexyl-
carboxamidin-Salz, 1H-Tetrazol, Pyridin, 20 8C, 48 h, dann DOWEX-
Ionenaustauscher (NH4

+), 45%. THF=Tetrahydrofuran, Bn=Benzyl,
DIAD=Diisopropylazodicarboxylat.

Abbildung 2. Typische Fluoreszenztitrationskurven f@r IspF (E. coli)
(6.25 mm) mit den Inhibitoren 7 (&), 8 (^) und 9 (*) im Konzentrati-
onsbereich 0–24 mm unter Verwendung von 0.3-mm-Aliquoten (nur
0.6-mm-Schritte sind aus Gr@nden der Qbersichtlichkeit gezeigt).[15]

Tabelle 1: AffinitAten der Liganden f@r E.-coli-IspF, bestimmt @ber Fluo-
reszenz- (7–9) und 13C-NMR-spektroskopische Tests (9, CMP, CDP).

Verbindung Kd [mm]
[a] IC50 [mm][b]

7 36�5
8 23�2
9 15�0.3 3.0
CMP 15.0
CDP 7.3

[a] Bei 25 8C; f@r Details siehe Lit. [15]. [b] Bei 37 8C; f@r Details siehe
Lit. [16] und Hintergrundinformationen.
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tetraedrisch koordinierten ZnII-Ion im aktiven Zentrum von
IspF (E. coli) wurden bis zu einer Aufl9sung von 2.3 bzw.
2.5 O bestimmt.[17] Der Komplex von 7 besteht aus sechs
Untereinheiten (zwei Trimeren) in der asymmetrischen Ele-
mentarzelle, derjenige von 9 nur aus einer. Die Kristall-
strukturen best�tigen, dass die Cytidinreste in beiden Kom-
plexen erwartungsgem�ß in Tasche III fest verankert sind.
Dabei bildet die �ber Ala131 gestapelte Nucleobase vier hoch
konservierte H-Br�cken zum Peptidr�ckgrat von Ala100 bis
Leu106 (Abbildung 1a und Hintergrundinformationen).[8,9]

Der Riboseteil geht weitere H-Br�cken ein, wobei die HO-
Gruppen an C(2’) und C(3’) mit dem Carboxylatrest von
Asp 56’ wechselwirken. Die katalytisch aktiven ZnII-Ionen
sind in beiden Strukturen tetraedrisch koordiniert, mit den
Seitenketten von His10’, His 42’ und Asp 8’ sowie dem b-
Phosphat der Inhibitoren als Liganden. Die Strukturen be-
st�tigen die vorhergesagte Bindung der Anthranilat- und
Dansyl-Fluorophore in Tasche II.

Im tern�ren Komplex von IspF mit Ligand 7 und ZnII

liegen unterschiedliche Konformationen der sechs, willk�rlich
als A–F bezeichneten, unabh�ngigen aktiven Zentren vor. In
den aktiven Zentren B–F sind die Orientierung des Liganden
und dessen Wechselwirkungen mit dem Protein sehr �hnlich
(siehe Hintergrundinformationen). Der CDP-Teil von 7
nimmt in allen sechs aktiven Zentren dieselbe Lage ein. Im
aktiven Zentrum A findet man den Imidazolring von His 34’
in der „geschlossenen“ (in das aktive Zentrum hineinragen-
de) Konformation, wohingegen die „offene“ (abgewandte)
Konformation in den aktiven Zentren B–F vorliegt.[18] Die
Tasche II in Struktur A ist beweglicher als in den restlichen
f�nf Strukturen, was sich in h9heren thermischen Parametern
widerspiegelt (siehe Hintergrundinformationen).

Abbildung 3 zeigt die Pberlagerung der Kristallstruktur
des tern�ren Komplexes IspF-ZnII-7 (Konformere B–F) mit
der vorher beschriebenen Struktur des quatern�ren Kom-
plexes von IspF mit CMP, 6 und ZnII (PDB-Eintrag 1JY8).[8a]

In beiden Strukturen liegt His 34’ in der „offenen“ Konfor-
mation vor. Das Anthranilat �berlagert sehr sch9n mit der
hydrophoben Region des Cyclodiphosphats 6. Die Schleife
Leu60’–Phe68’, die die hydrophobe Spalte in Tasche II bildet,
zeigt dabei betr�chtliche Flexibilit�t und n�hert sich den Li-
ganden in beiden Komplexen in stark unterschiedlichem
Maße. Aus Struktur�berlagerungen geht interessanterweise
hervor, dass diese flexible Schleife eine nahezu identische
Orientierung in den Kristallstrukturen des tern�ren Kom-
plexes IspF-ZnII-7 und des quatern�ren Komplexes IspF-ZnII-
MnII-CDP (PDB-Eintrag 1GX1) einnimmt.[8b] Im Unter-
schied dazu nimmt His34’ im quatern�ren Komplex die „ge-
schlossene“ Konformation ein, um mit dem b-Phosphatrest
von CDP zu wechselwirken (siehe Hintergrundinformatio-
nen).

Die Kristalle des tern�ren Komplexes von IspF mit 9 und
ZnII enthalten ein einziges Monomer in der asymmetrischen
Einheit. Wechselwirkungen in der „Cytidin-Tasche“ �hneln
stark denjenigen im Komplex von 7 (siehe Hintergrundin-
formationen). Die Seitenkette von His 34’ liegt in der offenen
Konformation vor. Eine Pberlagerung der Kristallstrukturen
der Komplexe von 7 und 9 (siehe Hintergrundinformationen)
liefert weitere Belege f�r die große konformative Beweg-

lichkeit der hydrophoben Spalte in Tasche II. Im Vergleich
zum Komplex von 7 gehen die lipophilen Reste Ile 56’,
Phe61’, Phe68’ und Leu76’ im Komplex von 9 eine be-
tr�chtliche Umorientierung ein, um den gr9ßeren Dansylrest
einzulagern und mit ihm hydrophobe Enzym-Ligand-Wech-
selwirkungen zu bilden. Die Fo-Fc-Differenzelektronendich-
teverteilung zeigt dabei nur eine schwache Elektronendichte
f�r den Dansylring von 9, wobei erh9hte thermische Para-
meter auf einen hohen Beweglichkeitsgrad schließen lassen
(siehe Hintergrundinformationen).

Wir haben hier Synthese, biologische Aktivit�t und Co-
kristallstrukturanalysen der ersten, strukturbasiert entworfe-
nen Hemmstoffe von IspF beschrieben. Dabei erm9glichte
die Einf�hrung von Fluoreszenzsonden in die Liganden 7–9
die Quantifizierung ihrer Bindungsaffinit�t zu IspF mittels
Fluoreszenz-Bindungstitrationen. Derzeit werden schnelle,
9konomische Bindungstests mithilfe dieser fluoreszierenden
Hemmstoffe entwickelt. Der f�r 7 und 9 vorausgesagte Bin-
dungsmodus wurde weitgehend durch Kristallstrukturanaly-
sen best�tigt. Obschon die hydrophobe Region in Tasche II
konformativ sehr beweglich ist, f�hrt ihre Besetzung durch
aromatische Ligandteile zu einem messbaren Gewinn an
freier Bindungsenthalpie. Somit wurden n�tzliche Erkennt-
nisse f�r die strukturbasierte Weiterentwicklung von Inhibi-
toren des „Nicht-Mevalonat-Wegs“ und letztlich von neuen
Klassen von Wirkstoffen gegen Malaria und andere mikro-
bielle Erkrankungen gewonnen.

Eingegangen am 23. August 2005,
ver�nderte Fassung am 3. November 2005
Online ver9ffentlicht am 3. Januar 2006

Abbildung 3. Qberlagerung der Kristallstrukturen des ternAren Komple-
xes IspF-ZnII-7 (Konformere B–F, C-Atome: hellgr@n) mit der fr@her be-
schriebenen Struktur des quaternAren Komplexes von IspF mit CMP, 6
und ZnII (PDB-Eintrag 1JY8;[8a] C-Atome: grau). Farbkodierung: O rot,
N blau, S orangerot, P lila, Zn lila.[17]
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diejenige von 9 bei lexc = 366 nm, lem = 532 nm mithilfe eines
Hitachi-F-2000-Fluoreszenzspektrophotometers (1 cm Quarz-
k�vette, 3 mL Volumen) gemessen. Kd-Werte wurden mithilfe
von Gleichung (1) ermittelt, wobei Irel die relative Fluoreszenz-

Irel = (ImaxFo)(Kd + Fo)
�1 (1)

intensit�t bei der gemessenen Emissionswellenl�nge, Imax die
maximale Fluoreszenzerh9hung bei S�ttigungsbindung des In-
hibitors und Fo die Konzentration des Fluorophors darstellen.
Die Hintergrundemissionen von 7–9 (Konzentration: 0 – 24 mm)
und IspF in 50 mm Tris-Hydrochlorid, pH 8.2, in Gegenwart von
10 mm MgSO4 und 2 mm Zn(OAc)2 wurden abgezogen, wodurch
die in Abbildung 2 gezeigten S�ttigungskurven erhalten wurden.
Die relativen Fluoreszenzerh9hungen (Imax�I)/I (I : maximale
Fluoreszenz des freien Inhibitors) betrugen 20 % (7), 30% (8)
und 80% (9). Die Bindungsdaten wurden mithilfe nichtlinearer
Kurvenanpassung nach der Methode der kleinsten Fehlerqua-
drate ermittelt (GraphPad Prism 4 Computerprogram, San
Diego, CA, 2005). Die angegebenen Fehlergrenzen sind Stan-
dardabweichungen mit R2 f�r alle Kurvenanpassungen � 0.96);
b) R. S. Sarfati, V. K. Kansal, H. Munier, P. Glaser, A.-M. Gilles,
E. LabruySre, M. Mock, A. Danchin, O. BTrzu, J. Biol. Chem.
1990, 265, 18902 – 18906; c) W. O. McClure, G. M. Edelman,
Biochemistry 1967, 6, 559 – 566.

[16] Die IC50-Werte f�r CMP, CDP und 9 wurden in durch IspF
(E. coli) katalysierten Reaktionen mit [1,3,4-13C3]-5 (1 mm) als
Substrat bestimmt. Die Produktbildung wurde mittels 13C-
NMR-Spektroskopie verfolgt (siehe Hintergrundinformatio-
nen).

[17] a) Kristalle von E.-coli-IspF im Komplex mit den Liganden 7
und 9 wurden mithilfe der Gasphasendiffusionsmethode ge-
z�chtet.[8b] Die Vorratsl9sungen der Liganden 7 und 9 bestanden
aus 0.1m Ammoniumsulfat und 0.1m Natriumacetat, pH 5, sowie
10% bzw. 8% Polyethylenglycol-200-Monomethylether. Die
h�ngenden Tropfen bestanden aus 1 mL Vorratsl9sung und 3 mL
einer L9sung von IspF (5.5 mgmL�1) in 50 mm Tris-Hydrochlo-
rid, pH 7.7, die 50 mm NaCl und 2 mm Ligand enthielt. Die
Kristalle des Komplexes von 7 fielen als monokline Pl�ttchen in
der Raumgruppe P21 mit den Elementarzellenabmessungen a=
54.03, b= 115.27, c= 87.61 O, b= 90.188 an. Kristalle des Kom-
plexes von 9 bestanden aus kubischen Bl9cken in der Raum-
gruppe I213 mit a= 145.1 O. Die Daten wurden mit der Strah-
lenquelle ID29 an der „European Synchrotron Radiation Faci-
lity“ (Grenoble, Frankreich) gemessen und mithilfe von
MOSFLM (A. G. W. Leslie, H. R. Powell, G. Winter, O. Svens-
son, D. Spruce, S. McSweeney, D. Love, S. Kinder, E. Duke, C.
Nave, Acta Crystallogr. D 2002, 58, 1924 – 1928) aufgearbeitet.
Der Datensatz f�r den Komplex von 7 ist 99.5% komplett, bis zu
einer Aufl9sung von 2.3 O, mit einem Rsym-Wert von 9.7% und
27.1% im Bereich h9chster Aufl9sung. Der Datensatz f�r den
Komplex von 9 ist 99 % komplett, bis zu einer Aufl9sung von
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2.5 O, mit einem Rsym-Wert von 8% und 68.5% im Bereich
h9chster Aufl9sung. Das Ausgangsmodell f�r beide Strukturer-
mittlungen war die Kristallstruktur vonE.-coli-IspF im Komplex
mit CDP (PDB-Eintrag 1GX1). Molekulare Substitutionsme-
thoden („Collaborative Computational Project Number 4“,Acta
Crystallogr. D 1994, 50, 760 – 763; J. Navaza, Acta Crystallogr. D
2001, 57, 1367 – 1372), wurden zur Erzeugung von Ausgangs-
modellen f�r weitere Verfeinerung verwendet; diese Modelle
bestanden aus sechs Untereinheiten (zwei Trimeren) f�r den
Komplex von 7 und einer einzigen Untereinheit f�r den Kom-
plex von 9. Die Strukturen wurden mithilfe einer Kombination
von O (T. A. Jones, J. Y. Zou, S. W. Cowan, M. Kjeldgaard, Acta
Crystallogr. A 1991, 47, 110 – 119) und refmac5 (G. N. Mur-
shudov, A. A. Vagin, E. J. Dodson, Acta Crystallogr. D 1997, 53,
240 – 255) bis zu einem R-Faktor von 24.3% und R-frei von
27.9% (Komplex von 7), bzw. einemR-Faktor von 21.5% undR-
frei von 25.9% (Komplex von 9) verfeinert. Das Modell des
Komplexes von 7 enth�lt 233 Wassermolek�le, sechs ZnII-Ionen,
eines in jedem aktiven Zentrum, und zwei Molek�le Geranyl-
diphosphat (GPP).[9d] Insgesamt befinden sich 92.1% der
Aminos�uren in den am meisten bevorzugten Regionen der
Ramachandran-Darstellung, wobei keine in die unerlaubten
Regionen f�llt. Das Modell des Komplexes von 9 enth�lt 56
Wassermolek�le, ein ZnII-Ion und ein Geranyldiphosphat;
90.8% der Aminos�uren liegen in den am meisten bevorzugten
Regionen der Ramachandran-Darstellung, keine in den uner-
laubten Regionen. F�r weitere Details siehe PDB-Eintr�ge
2AMT und 2AO4. b) Es ist zu erw�hnen, dass eine ganze Reihe
von Kristallisationsbedingungen getestet wurde, um verwertbare
Kristalle zu erhalten; dabei war unter den besten Bedingungen
f�r die Komplexe beider Liganden kein MgII-Ion vorhanden.
Kristalle mit anderen Liganden wurden in der Vergangenheit
sowohl in Gegenwart als auch in Abwesenheit von MgII- oder
MnII-Ionen gez�chtet; dabei wurden keine Strukturunterschiede
beobachtet, die auf die Gegenwart oder Abwesenheit der
zweiwertigen Kationen zur�ckzuf�hren w�ren (unver9ffent-
lichte Ergebnisse).

[18] a) Der Imidazolring von His34’ in den aktiven Zentren B–F
nimmt in unterschiedlichem Ausmaß die „offene“ (dem aktiven
Zentrum abgewandte) Konformation ein. Abst�nde von der
Anthranilat-NH2-Gruppe zum Imidazolring variieren von 3.8 bis
4.5 O, was signifikante intermolekulare Wechselwirkungen
ausschließt. Die „offene“ und die „geschlossene“ Konformation
von His34’ wurden bereits in zuvor beschriebenen Kristall-
strukturen von IspF beobachtet.[8,9] b) Die unterschiedliche
Struktur des aktiven Zentrums A kann nicht auf Kristallpa-
ckungseffekte zur�ckgef�hrt werden.
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